Chaste
Release::3.4
|
#include <AbstractIncompressibleMaterialLaw.hpp>
Public Member Functions | |
AbstractIncompressibleMaterialLaw () | |
virtual | ~AbstractIncompressibleMaterialLaw () |
virtual double | GetZeroStrainPressure ()=0 |
Public Member Functions inherited from AbstractMaterialLaw< DIM > | |
AbstractMaterialLaw () | |
virtual | ~AbstractMaterialLaw () |
virtual void | ComputeStressAndStressDerivative (c_matrix< double, DIM, DIM > &rC, c_matrix< double, DIM, DIM > &rInvC, double pressure, c_matrix< double, DIM, DIM > &rT, FourthOrderTensor< DIM, DIM, DIM, DIM > &rDTdE, bool computeDTdE)=0 |
void | ComputeCauchyStress (c_matrix< double, DIM, DIM > &rF, double pressure, c_matrix< double, DIM, DIM > &rSigma) |
void | Compute1stPiolaKirchoffStress (c_matrix< double, DIM, DIM > &rF, double pressure, c_matrix< double, DIM, DIM > &rS) |
void | Compute2ndPiolaKirchoffStress (c_matrix< double, DIM, DIM > &rC, double pressure, c_matrix< double, DIM, DIM > &rT) |
virtual void | ScaleMaterialParameters (double scaleFactor) |
void | SetChangeOfBasisMatrix (c_matrix< double, DIM, DIM > &rChangeOfBasisMatrix) |
void | ResetToNoChangeOfBasisMatrix () |
Additional Inherited Members | |
Protected Member Functions inherited from AbstractMaterialLaw< DIM > | |
void | ComputeTransformedDeformationTensor (c_matrix< double, DIM, DIM > &rC, c_matrix< double, DIM, DIM > &rInvC, c_matrix< double, DIM, DIM > &rCTransformed, c_matrix< double, DIM, DIM > &rInvCTransformed) |
void | TransformStressAndStressDerivative (c_matrix< double, DIM, DIM > &rT, FourthOrderTensor< DIM, DIM, DIM, DIM > &rDTdE, bool transformDTdE) |
Protected Attributes inherited from AbstractMaterialLaw< DIM > | |
c_matrix< double, DIM, DIM > * | mpChangeOfBasisMatrix |
AbstractIncompressibleMaterialLaw
An incompressible hyper-elastic material law for finite elastiticy
The law is given by a strain energy function W(E), where E is the strain, such that the stress T = dW/dE. In this incompressible case W = W_material + p(I3-1) where W_material(E) is the material part of the strain energy, p is the pressure and I3 = det(C)
Definition at line 53 of file AbstractIncompressibleMaterialLaw.hpp.
|
inline |
Constructor
Definition at line 57 of file AbstractIncompressibleMaterialLaw.hpp.
|
inlinevirtual |
Virtual Destructor
Definition at line 62 of file AbstractIncompressibleMaterialLaw.hpp.
|
pure virtual |
Implemented in AbstractIsotropicIncompressibleMaterialLaw< DIM >, AbstractIsotropicIncompressibleMaterialLaw< 3 >, PoleZeroMaterialLaw< DIM >, AbstractIsotropicIncompressibleMaterialLaw< DIM >, and SchmidCostaExponentialLaw2d.