Chaste  Release::3.4
AbstractIncompressibleMaterialLaw< DIM > Class Template Referenceabstract

#include <AbstractIncompressibleMaterialLaw.hpp>

+ Inheritance diagram for AbstractIncompressibleMaterialLaw< DIM >:
+ Collaboration diagram for AbstractIncompressibleMaterialLaw< DIM >:

Public Member Functions

 AbstractIncompressibleMaterialLaw ()
 
virtual ~AbstractIncompressibleMaterialLaw ()
 
virtual double GetZeroStrainPressure ()=0
 
- Public Member Functions inherited from AbstractMaterialLaw< DIM >
 AbstractMaterialLaw ()
 
virtual ~AbstractMaterialLaw ()
 
virtual void ComputeStressAndStressDerivative (c_matrix< double, DIM, DIM > &rC, c_matrix< double, DIM, DIM > &rInvC, double pressure, c_matrix< double, DIM, DIM > &rT, FourthOrderTensor< DIM, DIM, DIM, DIM > &rDTdE, bool computeDTdE)=0
 
void ComputeCauchyStress (c_matrix< double, DIM, DIM > &rF, double pressure, c_matrix< double, DIM, DIM > &rSigma)
 
void Compute1stPiolaKirchoffStress (c_matrix< double, DIM, DIM > &rF, double pressure, c_matrix< double, DIM, DIM > &rS)
 
void Compute2ndPiolaKirchoffStress (c_matrix< double, DIM, DIM > &rC, double pressure, c_matrix< double, DIM, DIM > &rT)
 
virtual void ScaleMaterialParameters (double scaleFactor)
 
void SetChangeOfBasisMatrix (c_matrix< double, DIM, DIM > &rChangeOfBasisMatrix)
 
void ResetToNoChangeOfBasisMatrix ()
 

Additional Inherited Members

- Protected Member Functions inherited from AbstractMaterialLaw< DIM >
void ComputeTransformedDeformationTensor (c_matrix< double, DIM, DIM > &rC, c_matrix< double, DIM, DIM > &rInvC, c_matrix< double, DIM, DIM > &rCTransformed, c_matrix< double, DIM, DIM > &rInvCTransformed)
 
void TransformStressAndStressDerivative (c_matrix< double, DIM, DIM > &rT, FourthOrderTensor< DIM, DIM, DIM, DIM > &rDTdE, bool transformDTdE)
 
- Protected Attributes inherited from AbstractMaterialLaw< DIM >
c_matrix< double, DIM, DIM > * mpChangeOfBasisMatrix
 

Detailed Description

template<unsigned DIM>
class AbstractIncompressibleMaterialLaw< DIM >

AbstractIncompressibleMaterialLaw

An incompressible hyper-elastic material law for finite elastiticy

The law is given by a strain energy function W(E), where E is the strain, such that the stress T = dW/dE. In this incompressible case W = W_material + p(I3-1) where W_material(E) is the material part of the strain energy, p is the pressure and I3 = det(C)

Definition at line 53 of file AbstractIncompressibleMaterialLaw.hpp.

Constructor & Destructor Documentation

template<unsigned DIM>
AbstractIncompressibleMaterialLaw< DIM >::AbstractIncompressibleMaterialLaw ( )
inline

Constructor

Definition at line 57 of file AbstractIncompressibleMaterialLaw.hpp.

template<unsigned DIM>
virtual AbstractIncompressibleMaterialLaw< DIM >::~AbstractIncompressibleMaterialLaw ( )
inlinevirtual

Virtual Destructor

Definition at line 62 of file AbstractIncompressibleMaterialLaw.hpp.

Member Function Documentation

template<unsigned DIM>
virtual double AbstractIncompressibleMaterialLaw< DIM >::GetZeroStrainPressure ( )
pure virtual

The documentation for this class was generated from the following file: