Chaste Release::3.1
|
00001 /* 00002 00003 Copyright (c) 2005-2012, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "AbstractCorrectionTermAssembler.hpp" 00037 #include <typeinfo> 00038 00039 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM> 00040 AbstractCorrectionTermAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>::AbstractCorrectionTermAssembler( 00041 AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>* pMesh, 00042 AbstractCardiacTissue<ELEMENT_DIM,SPACE_DIM>* pTissue, 00043 unsigned numQuadPoints) 00044 : AbstractCardiacFeVolumeIntegralAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM,true,false,CARDIAC>(pMesh,pTissue,numQuadPoints) 00045 { 00046 // Work out which elements have the same cell at every node, and hence can have SVI done 00047 mElementsHasIdenticalCellModels.resize(pMesh->GetNumElements(), true); 00048 for (typename AbstractTetrahedralMesh<ELEMENT_DIM, SPACE_DIM>::ElementIterator iter = pMesh->GetElementIteratorBegin(); 00049 iter != pMesh->GetElementIteratorEnd(); 00050 ++iter) 00051 { 00052 Element<ELEMENT_DIM, SPACE_DIM>& r_element = *iter; 00053 if (r_element.GetOwnership()) 00054 { 00055 unsigned node_zero = r_element.GetNodeGlobalIndex(0); 00056 AbstractCardiacCellInterface* p_cell_zero = this->mpCardiacTissue->GetCardiacCellOrHaloCell(node_zero); 00057 const std::type_info& r_zero_info = typeid(*p_cell_zero); 00058 // Check the other nodes match 00059 for (unsigned local_index=1; local_index<r_element.GetNumNodes(); local_index++) 00060 { 00061 unsigned global_index = r_element.GetNodeGlobalIndex(local_index); 00062 AbstractCardiacCellInterface* p_cell = this->mpCardiacTissue->GetCardiacCellOrHaloCell(global_index); 00063 const std::type_info& r_info = typeid(*p_cell); 00064 if (r_zero_info != r_info) 00065 { 00066 mElementsHasIdenticalCellModels[r_element.GetIndex()] = false; 00067 break; 00068 } 00069 } 00070 } 00071 } 00072 // Note: the mStateVariables std::vector is resized if correction will be applied to a given element 00073 } 00074 00075 00076 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM> 00077 void AbstractCorrectionTermAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>::ResetInterpolatedQuantities() 00078 { 00079 // reset ionic current, and state variables 00080 mIionicInterp = 0; 00081 for(unsigned i=0; i<mStateVariablesAtQuadPoint.size(); i++) 00082 { 00083 mStateVariablesAtQuadPoint[i] = 0; 00084 } 00085 } 00086 00087 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM> 00088 void AbstractCorrectionTermAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>::IncrementInterpolatedQuantities( 00089 double phiI, const Node<SPACE_DIM>* pNode) 00090 { 00091 // interpolate ionic current 00092 unsigned node_global_index = pNode->GetIndex(); 00093 mIionicInterp += phiI * this->mpCardiacTissue->rGetIionicCacheReplicated()[ node_global_index ]; 00094 // and state variables 00095 std::vector<double> state_vars = this->mpCardiacTissue->GetCardiacCellOrHaloCell(node_global_index)->GetStdVecStateVariables(); 00096 for (unsigned i=0; i<mStateVariablesAtQuadPoint.size(); i++) 00097 { 00098 mStateVariablesAtQuadPoint[i] += phiI * state_vars[i]; 00099 } 00100 } 00101 00102 00103 00104 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM> 00105 bool AbstractCorrectionTermAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>::ElementAssemblyCriterion(Element<ELEMENT_DIM,SPACE_DIM>& rElement) 00106 { 00107 // if element doesn't have identical cell models, can't do SVI. 00108 if (!mElementsHasIdenticalCellModels[rElement.GetIndex()]) 00109 { 00110 return false; 00111 } 00112 double DELTA_IIONIC = 1; // tolerance 00113 00114 //The criterion and the correction both need the ionic cache, so we better make sure that it's up-to-date 00115 assert(this->mpCardiacTissue->GetDoCacheReplication()); 00116 ReplicatableVector& r_cache = this->mpCardiacTissue->rGetIionicCacheReplicated(); 00117 00118 double diionic = fabs(r_cache[rElement.GetNodeGlobalIndex(0)] - r_cache[rElement.GetNodeGlobalIndex(1)]); 00119 00120 if (ELEMENT_DIM > 1) 00121 { 00122 diionic = std::max(diionic, fabs(r_cache[rElement.GetNodeGlobalIndex(0)] - r_cache[rElement.GetNodeGlobalIndex(2)]) ); 00123 diionic = std::max(diionic, fabs(r_cache[rElement.GetNodeGlobalIndex(1)] - r_cache[rElement.GetNodeGlobalIndex(2)]) ); 00124 } 00125 00126 if (ELEMENT_DIM > 2) 00127 { 00128 diionic = std::max(diionic, fabs(r_cache[rElement.GetNodeGlobalIndex(0)] - r_cache[rElement.GetNodeGlobalIndex(3)]) ); 00129 diionic = std::max(diionic, fabs(r_cache[rElement.GetNodeGlobalIndex(1)] - r_cache[rElement.GetNodeGlobalIndex(3)]) ); 00130 diionic = std::max(diionic, fabs(r_cache[rElement.GetNodeGlobalIndex(2)] - r_cache[rElement.GetNodeGlobalIndex(3)]) ); 00131 } 00132 00133 bool will_assemble = (diionic > DELTA_IIONIC); 00134 00135 if (will_assemble) 00136 { 00137 unsigned any_node = rElement.GetNodeGlobalIndex(0); 00138 mStateVariablesAtQuadPoint.resize(this->mpCardiacTissue->GetCardiacCellOrHaloCell(any_node)->GetNumberOfStateVariables() ); 00139 } 00140 00141 return will_assemble; 00142 } 00143 00145 // explicit instantiation 00147 00148 template class AbstractCorrectionTermAssembler<1,1,1>; 00149 template class AbstractCorrectionTermAssembler<1,2,1>; 00150 template class AbstractCorrectionTermAssembler<1,3,1>; 00151 template class AbstractCorrectionTermAssembler<2,2,1>; 00152 template class AbstractCorrectionTermAssembler<3,3,1>; 00153 template class AbstractCorrectionTermAssembler<1,1,2>; 00154 template class AbstractCorrectionTermAssembler<2,2,2>; 00155 template class AbstractCorrectionTermAssembler<3,3,2>;