Chaste Release::3.1
|
00001 /* 00002 00003 Copyright (c) 2005-2012, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "ExtendedBidomainAssembler.hpp" 00037 #include <boost/numeric/ublas/vector_proxy.hpp> 00038 00039 #include "Exception.hpp" 00040 #include "DistributedVector.hpp" 00041 #include "PdeSimulationTime.hpp" 00042 #include "ConstBoundaryCondition.hpp" 00043 00044 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM> 00045 c_matrix<double,3*(ELEMENT_DIM+1),3*(ELEMENT_DIM+1)> 00046 ExtendedBidomainAssembler<ELEMENT_DIM,SPACE_DIM>::ComputeMatrixTerm( 00047 c_vector<double, ELEMENT_DIM+1> &rPhi, 00048 c_matrix<double, SPACE_DIM, ELEMENT_DIM+1> &rGradPhi, 00049 ChastePoint<SPACE_DIM> &rX, 00050 c_vector<double,3> &rU, 00051 c_matrix<double, 3, SPACE_DIM> &rGradU /* not used */, 00052 Element<ELEMENT_DIM,SPACE_DIM>* pElement) 00053 { 00054 // get bidomain parameters 00055 double Am1 = mpExtendedBidomainTissue->GetAmFirstCell(); 00056 double Am2 = mpExtendedBidomainTissue->GetAmSecondCell(); 00057 double Cm1 = mpExtendedBidomainTissue->GetCmFirstCell(); 00058 double Cm2 = mpExtendedBidomainTissue->GetCmSecondCell(); 00059 00060 const c_matrix<double, SPACE_DIM, SPACE_DIM>& sigma_i_first_cell = mpExtendedBidomainTissue->rGetIntracellularConductivityTensor(pElement->GetIndex()); 00061 const c_matrix<double, SPACE_DIM, SPACE_DIM>& sigma_i_second_cell = mpExtendedBidomainTissue->rGetIntracellularConductivityTensorSecondCell(pElement->GetIndex()); 00062 const c_matrix<double, SPACE_DIM, SPACE_DIM>& sigma_e = mpExtendedBidomainTissue->rGetExtracellularConductivityTensor(pElement->GetIndex()); 00063 00064 double delta_t = PdeSimulationTime::GetPdeTimeStep(); 00065 00066 c_matrix<double, SPACE_DIM, ELEMENT_DIM+1> temp_1 = prod(sigma_i_first_cell, rGradPhi); 00067 c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> grad_phi_sigma_i_first_cell_grad_phi = 00068 prod(trans(rGradPhi), temp_1); 00069 00070 c_matrix<double, SPACE_DIM, ELEMENT_DIM+1> temp_2 = prod(sigma_i_second_cell, rGradPhi); 00071 c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> grad_phi_sigma_i_second_cell_grad_phi = 00072 prod(trans(rGradPhi), temp_2); 00073 00074 c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> basis_outer_prod = 00075 outer_prod(rPhi, rPhi); 00076 00077 c_matrix<double, SPACE_DIM, ELEMENT_DIM+1> temp_ext = prod(sigma_e, rGradPhi); 00078 c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> grad_phi_sigma_e_grad_phi = 00079 prod(trans(rGradPhi), temp_ext); 00080 00081 00082 c_matrix<double,3*(ELEMENT_DIM+1),3*(ELEMENT_DIM+1)> ret; 00083 00084 // first equation, first unknown 00085 matrix_slice<c_matrix<double, 3*ELEMENT_DIM+3, 3*ELEMENT_DIM+3> > 00086 slice100(ret, slice (0, 3, ELEMENT_DIM+1), slice (0, 3, ELEMENT_DIM+1)); 00087 slice100 = (Am1*Cm1/delta_t)*basis_outer_prod + grad_phi_sigma_i_first_cell_grad_phi; 00088 00089 // first equation, second unknown 00090 matrix_slice<c_matrix<double, 3*ELEMENT_DIM+3, 3*ELEMENT_DIM+3> > 00091 slice200(ret, slice (0, 3, ELEMENT_DIM+1), slice (1, 3, ELEMENT_DIM+1)); 00092 slice200 = zero_matrix<double>(ELEMENT_DIM+1, ELEMENT_DIM+1); 00093 00094 // first equation, third unknown 00095 matrix_slice<c_matrix<double, 3*ELEMENT_DIM+3, 3*ELEMENT_DIM+3> > 00096 slice300(ret, slice (0, 3, ELEMENT_DIM+1), slice (2, 3, ELEMENT_DIM+1)); 00097 slice300 = - (Am1*Cm1/delta_t)*basis_outer_prod; 00098 00099 // second equation, first unknown 00100 matrix_slice<c_matrix<double, 3*ELEMENT_DIM+3, 3*ELEMENT_DIM+3> > 00101 slice010(ret, slice (1, 3, ELEMENT_DIM+1), slice (0, 3, ELEMENT_DIM+1)); 00102 slice010 = zero_matrix<double>(ELEMENT_DIM+1, ELEMENT_DIM+1); 00103 00104 // second equation, second unknown 00105 matrix_slice<c_matrix<double, 3*ELEMENT_DIM+3, 3*ELEMENT_DIM+3> > 00106 slice020(ret, slice (1, 3, ELEMENT_DIM+1), slice (1, 3, ELEMENT_DIM+1)); 00107 slice020 = (Am2*Cm2/delta_t)*basis_outer_prod + grad_phi_sigma_i_second_cell_grad_phi; 00108 00109 // second equation, third unknown 00110 matrix_slice<c_matrix<double, 3*ELEMENT_DIM+3, 3*ELEMENT_DIM+3> > 00111 slice030(ret, slice (1, 3, ELEMENT_DIM+1), slice (2, 3, ELEMENT_DIM+1)); 00112 slice030 = - (Am2*Cm2/delta_t)*basis_outer_prod; 00113 00114 // third equation, first unknown 00115 matrix_slice<c_matrix<double, 3*ELEMENT_DIM+3, 3*ELEMENT_DIM+3> > 00116 slice001(ret, slice (2, 3, ELEMENT_DIM+1), slice (0, 3, ELEMENT_DIM+1)); 00117 slice001 = - grad_phi_sigma_i_first_cell_grad_phi; 00118 00119 // third equation, second unknown 00120 matrix_slice<c_matrix<double, 3*ELEMENT_DIM+3, 3*ELEMENT_DIM+3> > 00121 slice002(ret, slice (2, 3, ELEMENT_DIM+1), slice (1, 3, ELEMENT_DIM+1)); 00122 slice002 = - grad_phi_sigma_i_second_cell_grad_phi; 00123 00124 // third equation, third unknown 00125 matrix_slice<c_matrix<double, 3*ELEMENT_DIM+3, 3*ELEMENT_DIM+3> > 00126 slice003(ret, slice (2, 3, ELEMENT_DIM+1), slice (2, 3, ELEMENT_DIM+1)); 00127 slice003 = - grad_phi_sigma_e_grad_phi; 00128 00129 return ret; 00130 } 00131 00132 00133 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM> 00134 ExtendedBidomainAssembler<ELEMENT_DIM,SPACE_DIM>::ExtendedBidomainAssembler( 00135 AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>* pMesh, 00136 ExtendedBidomainTissue<SPACE_DIM>* pTissue, 00137 unsigned numQuadPoints) 00138 : AbstractCardiacFeVolumeIntegralAssembler<ELEMENT_DIM,SPACE_DIM,3,true,true,NORMAL>(pMesh,pTissue,numQuadPoints), 00139 mpExtendedBidomainTissue(pTissue) 00140 { 00141 assert(pTissue != NULL); 00142 mpConfig = HeartConfig::Instance(); 00143 } 00144 00145 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM> 00146 ExtendedBidomainAssembler<ELEMENT_DIM,SPACE_DIM>::~ExtendedBidomainAssembler() 00147 { 00148 } 00149 00151 // Explicit instantiation 00153 00154 template class ExtendedBidomainAssembler<1,1>; 00155 template class ExtendedBidomainAssembler<2,2>; 00156 template class ExtendedBidomainAssembler<3,3>;