AbstractLinearParabolicPdeSystemForCoupledOdeSystem< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM > Class Template Reference

#include <AbstractLinearParabolicPdeSystemForCoupledOdeSystem.hpp>

List of all members.

Public Member Functions

virtual double ComputeDuDtCoefficientFunction (const ChastePoint< SPACE_DIM > &rX, unsigned pdeIndex)=0
virtual double ComputeSourceTerm (const ChastePoint< SPACE_DIM > &rX, c_vector< double, PROBLEM_DIM > &rU, std::vector< double > &rOdeSolution, unsigned pdeIndex)=0
virtual double ComputeSourceTermAtNode (const Node< SPACE_DIM > &rNode, c_vector< double, PROBLEM_DIM > &rU, std::vector< double > &rOdeSolution, unsigned pdeIndex)
virtual c_matrix< double,
SPACE_DIM, SPACE_DIM > 
ComputeDiffusionTerm (const ChastePoint< SPACE_DIM > &rX, unsigned pdeIndex, Element< ELEMENT_DIM, SPACE_DIM > *pElement=NULL)=0
virtual ~AbstractLinearParabolicPdeSystemForCoupledOdeSystem ()

Detailed Description

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM = ELEMENT_DIM, unsigned PROBLEM_DIM = 1>
class AbstractLinearParabolicPdeSystemForCoupledOdeSystem< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >

AbstractLinearParabolicPdeSystemForCoupledOdeSystem class.

A system of parabolic PDEs, which may be coupled via their source terms:

d/dt (u_i) = div (D(x) grad (u_i)) + f_i (x, u_0, ..., u_{p-1}, v_0, ..., v_{q-1}), i=0,...,p-1.

Here p denotes the size of the PDE system and each source term f_i may be nonlinear. The variables v_0, ..., v_{q-1} are assumed to satisfy a coupled ODE system of the form

d/dt (v_j) = g_j(x, u_0, ..., u_{p-1}, v_0, ..., v_{q-1}), j=0,...,q-1.

Such systems may be solved using LinearParabolicPdeSystemWithCoupledOdeSystemSolver.

Definition at line 60 of file AbstractLinearParabolicPdeSystemForCoupledOdeSystem.hpp.


Constructor & Destructor Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM = ELEMENT_DIM, unsigned PROBLEM_DIM = 1>
virtual AbstractLinearParabolicPdeSystemForCoupledOdeSystem< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::~AbstractLinearParabolicPdeSystemForCoupledOdeSystem (  )  [inline, virtual]

Destructor.

Definition at line 103 of file AbstractLinearParabolicPdeSystemForCoupledOdeSystem.hpp.


Member Function Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM = ELEMENT_DIM, unsigned PROBLEM_DIM = 1>
virtual c_matrix<double, SPACE_DIM, SPACE_DIM> AbstractLinearParabolicPdeSystemForCoupledOdeSystem< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::ComputeDiffusionTerm ( const ChastePoint< SPACE_DIM > &  rX,
unsigned  pdeIndex,
Element< ELEMENT_DIM, SPACE_DIM > *  pElement = NULL 
) [pure virtual]
Returns:
computed diffusion term D_i(x) at a point in space. The diffusion tensor should be symmetric and positive definite.
Parameters:
rX The point x at which the diffusion term D_i is computed
pdeIndex the index of the PDE, denoted by i above
pElement The mesh element that x is contained in (optional)
template<unsigned ELEMENT_DIM, unsigned SPACE_DIM = ELEMENT_DIM, unsigned PROBLEM_DIM = 1>
virtual double AbstractLinearParabolicPdeSystemForCoupledOdeSystem< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::ComputeDuDtCoefficientFunction ( const ChastePoint< SPACE_DIM > &  rX,
unsigned  pdeIndex 
) [pure virtual]
Returns:
computed function c_i(x).
Parameters:
rX the point x at which the function c_i is computed
pdeIndex the index of the PDE, denoted by i above
template<unsigned ELEMENT_DIM, unsigned SPACE_DIM = ELEMENT_DIM, unsigned PROBLEM_DIM = 1>
virtual double AbstractLinearParabolicPdeSystemForCoupledOdeSystem< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::ComputeSourceTerm ( const ChastePoint< SPACE_DIM > &  rX,
c_vector< double, PROBLEM_DIM > &  rU,
std::vector< double > &  rOdeSolution,
unsigned  pdeIndex 
) [pure virtual]
Returns:
computed source term f_i(x, u_1, u_2, ..., u_p) at a point in space.
Parameters:
rX the point x at which the nonlinear source term is computed
rU the vector of dependent variables (u_1, u_2, ..., u_p) at the point x
rOdeSolution the ODE system state vector (v_1, ..., v_q) at the point x (if an ODE system is present)
pdeIndex the index of the PDE, denoted by i above

Referenced by AbstractLinearParabolicPdeSystemForCoupledOdeSystem< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::ComputeSourceTermAtNode().

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
double AbstractLinearParabolicPdeSystemForCoupledOdeSystem< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::ComputeSourceTermAtNode ( const Node< SPACE_DIM > &  rNode,
c_vector< double, PROBLEM_DIM > &  rU,
std::vector< double > &  rOdeSolution,
unsigned  pdeIndex 
) [inline, virtual]
Returns:
computed source term f_i(x, u_1, u_2, ..., u_p) at a node.
Parameters:
rNode the node at which the nonlinear source term f_i is computed
rU the vector of dependent variables (u_1, u_2, ..., u_p) at the node
rOdeSolution the ODE system state vector (v_1, ..., v_q) at the node (if an ODE system is present)
pdeIndex the index of the PDE, denoted by i above

Definition at line 112 of file AbstractLinearParabolicPdeSystemForCoupledOdeSystem.hpp.

References AbstractLinearParabolicPdeSystemForCoupledOdeSystem< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::ComputeSourceTerm(), and Node< SPACE_DIM >::GetPoint().


The documentation for this class was generated from the following file:

Generated by  doxygen 1.6.2