![]() |
Chaste
Release::3.4
|
#include <BidomainNeumannSurfaceTermAssembler.hpp>
Inheritance diagram for BidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >:
Collaboration diagram for BidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >:Protected Member Functions | |
| virtual c_vector< double, 2 *ELEMENT_DIM > | ComputeVectorSurfaceTerm (const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > &rSurfaceElement, c_vector< double, ELEMENT_DIM > &rPhi, ChastePoint< SPACE_DIM > &rX) |
Protected Member Functions inherited from AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, 2 > | |
| virtual void | AssembleOnSurfaceElement (const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > &rSurfaceElement, c_vector< double, PROBLEM_DIM *ELEMENT_DIM > &rBSurfElem) |
| void | DoAssemble () |
Protected Member Functions inherited from AbstractFeAssemblerCommon< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, false, NORMAL > | |
| virtual double | GetCurrentSolutionOrGuessValue (unsigned nodeIndex, unsigned indexOfUnknown) |
| virtual void | ResetInterpolatedQuantities () |
| virtual void | IncrementInterpolatedQuantities (double phiI, const Node< SPACE_DIM > *pNode) |
| virtual void | IncrementInterpolatedGradientQuantities (const c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &rGradPhi, unsigned phiIndex, const Node< SPACE_DIM > *pNode) |
Additional Inherited Members | |
Protected Types inherited from AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, 2 > | |
| typedef LinearBasisFunction < ELEMENT_DIM-1 > | SurfaceBasisFunction |
Protected Attributes inherited from AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, 2 > | |
| AbstractTetrahedralMesh < ELEMENT_DIM, SPACE_DIM > * | mpMesh |
| BoundaryConditionsContainer < ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM > * | mpBoundaryConditions |
| GaussianQuadratureRule < ELEMENT_DIM-1 > * | mpSurfaceQuadRule |
Protected Attributes inherited from AbstractFeAssemblerCommon< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, false, NORMAL > | |
| ReplicatableVector | mCurrentSolutionOrGuessReplicated |
Protected Attributes inherited from AbstractFeAssemblerInterface< CAN_ASSEMBLE_VECTOR, CAN_ASSEMBLE_MATRIX > | |
| Vec | mVectorToAssemble |
| Mat | mMatrixToAssemble |
| bool | mAssembleMatrix |
| bool | mAssembleVector |
| bool | mZeroMatrixBeforeAssembly |
| bool | mZeroVectorBeforeAssembly |
| PetscInt | mOwnershipRangeLo |
| PetscInt | mOwnershipRangeHi |
Assembler which sets up the surface integral integrals for the bidomain equations, assuming that the boundary conditions are written: div(sigma_i grad phi_i) . n = g1 and div(sigma_e grad phi_e) dot n = g2.
These are not 'natural' boundary conditions for the para-elliptic bidomain equations (natural BCs for the second
Hence we don't use the NaturalNeumannSurfaceTermAssembler and have a special class here. It means that any BCs specified for bidomain and put in a BoundaryConditionsContainer should be for div(sigma_i grad phi_i) . n and div(sigma_e grad phi_e) . n.
Definition at line 56 of file BidomainNeumannSurfaceTermAssembler.hpp.
|
inline |
Constructor
| pMesh | The mesh |
| pBoundaryConditions | The boundary conditions container |
Definition at line 83 of file BidomainNeumannSurfaceTermAssembler.hpp.
|
protectedvirtual |
This method returns the vector to be added to full vector for a given Gauss point in BoundaryElement, ie, essentially the INTEGRAND in the boundary integral part of the definition of the vector. The arguments are the bases, x and current solution computed at the Gauss point.
| rSurfaceElement | the element which is being considered. |
| rPhi | The basis functions, rPhi(i) = phi_i, i=1..numBases |
| rX | The point in space |
Reimplemented from AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, 2 >.
Definition at line 93 of file BidomainNeumannSurfaceTermAssembler.hpp.