Chaste
Release::3.4
|
#include <AbstractFeSurfaceIntegralAssembler.hpp>
Protected Types | |
typedef LinearBasisFunction < ELEMENT_DIM-1 > | SurfaceBasisFunction |
Protected Member Functions | |
virtual c_vector< double, PROBLEM_DIM *ELEMENT_DIM > | ComputeVectorSurfaceTerm (const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > &rSurfaceElement, c_vector< double, ELEMENT_DIM > &rPhi, ChastePoint< SPACE_DIM > &rX) |
virtual void | AssembleOnSurfaceElement (const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > &rSurfaceElement, c_vector< double, PROBLEM_DIM *ELEMENT_DIM > &rBSurfElem) |
void | DoAssemble () |
Protected Member Functions inherited from AbstractFeAssemblerCommon< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, false, NORMAL > | |
virtual double | GetCurrentSolutionOrGuessValue (unsigned nodeIndex, unsigned indexOfUnknown) |
virtual void | ResetInterpolatedQuantities () |
virtual void | IncrementInterpolatedQuantities (double phiI, const Node< SPACE_DIM > *pNode) |
virtual void | IncrementInterpolatedGradientQuantities (const c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &rGradPhi, unsigned phiIndex, const Node< SPACE_DIM > *pNode) |
Protected Attributes | |
AbstractTetrahedralMesh < ELEMENT_DIM, SPACE_DIM > * | mpMesh |
BoundaryConditionsContainer < ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM > * | mpBoundaryConditions |
GaussianQuadratureRule < ELEMENT_DIM-1 > * | mpSurfaceQuadRule |
Protected Attributes inherited from AbstractFeAssemblerCommon< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, false, NORMAL > | |
ReplicatableVector | mCurrentSolutionOrGuessReplicated |
Protected Attributes inherited from AbstractFeAssemblerInterface< CAN_ASSEMBLE_VECTOR, CAN_ASSEMBLE_MATRIX > | |
Vec | mVectorToAssemble |
Mat | mMatrixToAssemble |
bool | mAssembleMatrix |
bool | mAssembleVector |
bool | mZeroMatrixBeforeAssembly |
bool | mZeroVectorBeforeAssembly |
PetscInt | mOwnershipRangeLo |
PetscInt | mOwnershipRangeHi |
Similar to AbstractFeVolumeIntegralAssembler but is used for constructing finite element objects that are based on SURFACE INTEGRALS, as opposed to volume integrals.
This class assumes that the concrete class only needs to assemble a vector, not a matrix. (Can be extended in the future if needed).
Hence, the (effectively) pure method, that needs to be implemented, is ComputeVectorSurfaceTerm().
The surface terms is assumed to come from Neumann BCs, so only the surface elements containing non-zero Neumann BCs (from the BoundaryConditionsContainer given) are assembled on.
The interface is the same the volume assemblers.
Definition at line 61 of file AbstractFeSurfaceIntegralAssembler.hpp.
|
protected |
Basis function for use with boundary elements.
Definition at line 74 of file AbstractFeSurfaceIntegralAssembler.hpp.
AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::AbstractFeSurfaceIntegralAssembler | ( | AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > * | pMesh, |
BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM > * | pBoundaryConditions | ||
) |
Constructor
pMesh | The mesh |
pBoundaryConditions | The boundary conditions container |
Definition at line 147 of file AbstractFeSurfaceIntegralAssembler.hpp.
References AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::mpSurfaceQuadRule.
|
virtual |
Destructor
Definition at line 163 of file AbstractFeSurfaceIntegralAssembler.hpp.
|
protectedvirtual |
Calculate the contribution of a single surface element with Neumann boundary condition to the linear system.
rSurfaceElement | The element to assemble on. |
rBSurfElem | The element's contribution to the RHS vector is returned in this vector of length n, the no. of nodes in this element. There is no need to zero this vector before calling. |
Definition at line 203 of file AbstractFeSurfaceIntegralAssembler.hpp.
References AbstractElement< ELEMENT_DIM, SPACE_DIM >::GetIndex(), AbstractElement< ELEMENT_DIM, SPACE_DIM >::GetNode(), AbstractElement< ELEMENT_DIM, SPACE_DIM >::GetNumNodes(), and ChastePoint< DIM >::rGetLocation().
|
inlineprotectedvirtual |
** This method needs to be overloaded in the concrete class **
rSurfaceElement | the element which is being considered. |
rPhi | The basis functions, rPhi(i) = phi_i, i=1..numBases |
rX | The point in space |
Reimplemented in NaturalNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >, NaturalNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM, 1 >, BidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >, ExtendedBidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >, and ExtendedBidomainNeumannSurfaceTermAssembler< ELEM_DIM, SPACE_DIM >.
Definition at line 89 of file AbstractFeSurfaceIntegralAssembler.hpp.
|
protectedvirtual |
Main assemble method. Users should call Assemble() however
Implements AbstractFeAssemblerInterface< CAN_ASSEMBLE_VECTOR, CAN_ASSEMBLE_MATRIX >.
Definition at line 170 of file AbstractFeSurfaceIntegralAssembler.hpp.
References GenericEventHandler< 16, HeartEventHandler >::BeginEvent(), GenericEventHandler< 16, HeartEventHandler >::EndEvent(), BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::EndNeumann(), and AbstractTetrahedralElement< ELEMENT_DIM, SPACE_DIM >::GetStiffnessMatrixGlobalIndices().
|
inline |
Reset the internal boundary conditions container pointer
pBoundaryConditions |
Definition at line 138 of file AbstractFeSurfaceIntegralAssembler.hpp.
|
protected |
Boundary conditions container
Definition at line 68 of file AbstractFeSurfaceIntegralAssembler.hpp.
Referenced by NaturalNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::ComputeVectorSurfaceTerm(), and AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, 2 >::ResetBoundaryConditionsContainer().
|
protected |
Mesh to be solved on.
Definition at line 65 of file AbstractFeSurfaceIntegralAssembler.hpp.
|
protected |
Quadrature rule for use on boundary elements.
Definition at line 71 of file AbstractFeSurfaceIntegralAssembler.hpp.
Referenced by AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::AbstractFeSurfaceIntegralAssembler().