Chaste Release::3.1
ExtendedBidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM > Class Template Reference

#include <ExtendedBidomainNeumannSurfaceTermAssembler.hpp>

Inheritance diagram for ExtendedBidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >:
Collaboration diagram for ExtendedBidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >:

List of all members.

Public Member Functions

 ExtendedBidomainNeumannSurfaceTermAssembler (AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *pMesh, BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, 3 > *pBoundaryConditions, unsigned numQuadPoints=2)

Protected Member Functions

virtual c_vector< double,
3 *ELEMENT_DIM > 
ComputeVectorSurfaceTerm (const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > &rSurfaceElement, c_vector< double, ELEMENT_DIM > &rPhi, ChastePoint< SPACE_DIM > &rX)

Detailed Description

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
class ExtendedBidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >

Assembler which sets up the surface integral integrals for the extended bidomain equations, assuming that the boundary conditions are written: div(sigma_i_1 grad phi_i_1) . n = g1, div(sigma_i_2 grad phi_i_2) . n = g2 and div(sigma_e grad phi_e) dot n = g3.

Definition at line 50 of file ExtendedBidomainNeumannSurfaceTermAssembler.hpp.


Constructor & Destructor Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
ExtendedBidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >::ExtendedBidomainNeumannSurfaceTermAssembler ( AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *  pMesh,
BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, 3 > *  pBoundaryConditions,
unsigned  numQuadPoints = 2 
) [inline]

Constructor

Parameters:
pMeshThe mesh
pBoundaryConditionsThe boundary conditions container
numQuadPointsNumber of quad points (per dimension) to use

Definition at line 83 of file ExtendedBidomainNeumannSurfaceTermAssembler.hpp.


Member Function Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
c_vector< double, 3 *ELEMENT_DIM > ExtendedBidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >::ComputeVectorSurfaceTerm ( const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > &  rSurfaceElement,
c_vector< double, ELEMENT_DIM > &  rPhi,
ChastePoint< SPACE_DIM > &  rX 
) [protected, virtual]

ComputeVectorSurfaceTerm()

This method is called by AssembleOnSurfaceElement() and tells the assembler what to add to the element stiffness matrix arising from surface element contributions.

NOTE: this method has to be implemented but shouldn't ever be called - because all bidomain problems (currently) just have zero Neumann boundary conditions and the AbstractLinearAssmebler::AssembleSystem() method will realise this and not loop over surface elements.

Parameters:
rSurfaceElementthe element which is being considered.
rPhiThe basis functions, rPhi(i) = phi_i, i=1..numBases
rXThe point in space

Reimplemented from AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, 3 >.

Definition at line 94 of file ExtendedBidomainNeumannSurfaceTermAssembler.hpp.


The documentation for this class was generated from the following file: