BidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM > Class Template Reference

#include <BidomainNeumannSurfaceTermAssembler.hpp>

Inherits AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, 2 >.

Collaboration diagram for BidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 BidomainNeumannSurfaceTermAssembler (AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *pMesh, BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, 2 > *pBoundaryConditions)

Protected Member Functions

virtual c_vector< double,
2 *ELEMENT_DIM > 
ComputeVectorSurfaceTerm (const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > &rSurfaceElement, c_vector< double, ELEMENT_DIM > &rPhi, ChastePoint< SPACE_DIM > &rX)

Detailed Description

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
class BidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >

Assembler which sets up the surface integral integrals for the bidomain equations, assuming that the boundary conditions are written: div(sigma_i grad phi_i) . n = g1 and div(sigma_e grad phi_e) dot n = g2.

These are not 'natural' boundary conditions for the para-elliptic bidomain equations (natural BCs for the second

Hence we don't use the NaturalNeumannSurfaceTermAssembler and have a special class here. It means that any BCs specified for bidomain and put in a BoundaryConditionsContainer should be for div(sigma_i grad phi_i) . n and div(sigma_e grad phi_e) . n.

Definition at line 56 of file BidomainNeumannSurfaceTermAssembler.hpp.


Constructor & Destructor Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
BidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >::BidomainNeumannSurfaceTermAssembler ( AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *  pMesh,
BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, 2 > *  pBoundaryConditions 
) [inline]

Constructor

Parameters:
pMesh The mesh
pBoundaryConditions The boundary conditions container

Definition at line 83 of file BidomainNeumannSurfaceTermAssembler.hpp.


Member Function Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
c_vector< double, 2 *ELEMENT_DIM > BidomainNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM >::ComputeVectorSurfaceTerm ( const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > &  rSurfaceElement,
c_vector< double, ELEMENT_DIM > &  rPhi,
ChastePoint< SPACE_DIM > &  rX 
) [inline, protected, virtual]

This method returns the vector to be added to full vector for a given Gauss point in BoundaryElement, ie, essentially the INTEGRAND in the boundary integral part of the definition of the vector. The arguments are the bases, x and current solution computed at the Gauss point.

Parameters:
rSurfaceElement the element which is being considered.
rPhi The basis functions, rPhi(i) = phi_i, i=1..numBases
rX The point in space
Returns:
stencil vector

Reimplemented from AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, 2 >.

Definition at line 93 of file BidomainNeumannSurfaceTermAssembler.hpp.

References AbstractFeSurfaceIntegralAssembler< ELEMENT_DIM, SPACE_DIM, 2 >::mpBoundaryConditions.


The documentation for this class was generated from the following file:

Generated by  doxygen 1.6.2