GaussianQuadratureRule< ELEMENT_DIM > Class Template Reference

#include <GaussianQuadratureRule.hpp>

Collaboration diagram for GaussianQuadratureRule< ELEMENT_DIM >:

List of all members.

Public Member Functions

 GaussianQuadratureRule (unsigned quadratureOrder)
const ChastePoint< ELEMENT_DIM > & rGetQuadPoint (unsigned index) const
double GetWeight (unsigned index) const
unsigned GetNumQuadPoints () const
template<>
 GaussianQuadratureRule (unsigned quadratureOrder)
template<>
 GaussianQuadratureRule (unsigned quadratureOrder)
template<>
 GaussianQuadratureRule (unsigned quadratureOrder)

Private Attributes

unsigned mNumQuadPoints
std::vector< ChastePoint
< ELEMENT_DIM > > 
mPoints
std::vector< doublemWeights

Detailed Description

template<unsigned ELEMENT_DIM>
class GaussianQuadratureRule< ELEMENT_DIM >

This class encapsulates tables of Gaussian quadrature points and the associated weights.

Data is available for 1d, 2d and 3d quadrature over (canonical) triangles, with appropriate numbers of Gauss points. Weights sum to 1 and are non-negative. The values are computed when an object is instantiated.

Definition at line 50 of file GaussianQuadratureRule.hpp.


Constructor & Destructor Documentation

template<unsigned ELEMENT_DIM>
GaussianQuadratureRule< ELEMENT_DIM >::GaussianQuadratureRule ( unsigned  quadratureOrder  )  [inline]

The constructor builds the appropriate table for the dimension (given by the template argument) and number of points in each dimension (given as a constructor argument).

An exception is thrown if data is not available for the requested parameters.

Parameters:
quadratureOrder The minimum polynomial order that the rule can integrate exactly

Definition at line 282 of file GaussianQuadratureRule.cpp.

References EXCEPTION.

template<>
GaussianQuadratureRule< 0 >::GaussianQuadratureRule ( unsigned  quadratureOrder  )  [inline]

Constructor specialization for 0d.

Parameters:
quadratureOrder The minimum polynomial order that the rule can integrate exactly (ignored in 0-d case)

Definition at line 68 of file GaussianQuadratureRule.cpp.

References GaussianQuadratureRule< ELEMENT_DIM >::mNumQuadPoints, GaussianQuadratureRule< ELEMENT_DIM >::mPoints, and GaussianQuadratureRule< ELEMENT_DIM >::mWeights.

template<>
GaussianQuadratureRule< 2 >::GaussianQuadratureRule ( unsigned  quadratureOrder  )  [inline]

Constructor specialization for 2d.

Parameters:
quadratureOrder The minimum polynomial order that the rule can integrate exactly

Definition at line 130 of file GaussianQuadratureRule.cpp.

References EXCEPTION, GaussianQuadratureRule< ELEMENT_DIM >::mNumQuadPoints, GaussianQuadratureRule< ELEMENT_DIM >::mPoints, and GaussianQuadratureRule< ELEMENT_DIM >::mWeights.

template<>
GaussianQuadratureRule< 3 >::GaussianQuadratureRule ( unsigned  quadratureOrder  )  [inline]

Constructor specialization for 3d.

Parameters:
quadratureOrder The minimum polynomial order that the rule can integrate exactly

Definition at line 198 of file GaussianQuadratureRule.cpp.

References EXCEPTION, GaussianQuadratureRule< ELEMENT_DIM >::mNumQuadPoints, GaussianQuadratureRule< ELEMENT_DIM >::mPoints, and GaussianQuadratureRule< ELEMENT_DIM >::mWeights.


Member Function Documentation

template<unsigned ELEMENT_DIM>
unsigned GaussianQuadratureRule< ELEMENT_DIM >::GetNumQuadPoints (  )  const [inline]
template<unsigned ELEMENT_DIM>
double GaussianQuadratureRule< ELEMENT_DIM >::GetWeight ( unsigned  index  )  const [inline]
template<unsigned ELEMENT_DIM>
const ChastePoint< ELEMENT_DIM > & GaussianQuadratureRule< ELEMENT_DIM >::rGetQuadPoint ( unsigned  index  )  const [inline]

Member Data Documentation

template<unsigned ELEMENT_DIM>
unsigned GaussianQuadratureRule< ELEMENT_DIM >::mNumQuadPoints [private]
template<unsigned ELEMENT_DIM>
std::vector<ChastePoint<ELEMENT_DIM> > GaussianQuadratureRule< ELEMENT_DIM >::mPoints [private]
template<unsigned ELEMENT_DIM>
std::vector<double> GaussianQuadratureRule< ELEMENT_DIM >::mWeights [private]

The documentation for this class was generated from the following files:

Generated by  doxygen 1.6.2