IncompressibleNonlinearElasticitySolver.cpp

00001 /*
00002 
00003 Copyright (c) 2005-2015, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 /*
00037  * NOTE ON COMPILATION ERRORS:
00038  *
00039  * This file won't compile with Intel icpc version 9.1.039, with error message:
00040  * "Terminate with:
00041   (0): internal error: backend signals"
00042  *
00043  * Try recompiling with icpc version 10.0.025.
00044  */
00045 
00046 #include "IncompressibleNonlinearElasticitySolver.hpp"
00047 #include "LinearBasisFunction.hpp"
00048 #include "QuadraticBasisFunction.hpp"
00049 #include <algorithm>
00050 
00051 template<size_t DIM>
00052 void IncompressibleNonlinearElasticitySolver<DIM>::AssembleSystem(bool assembleResidual,
00053                                                                   bool assembleJacobian)
00054 {
00055     // Check we've actually been asked to do something!
00056     assert(assembleResidual || assembleJacobian);
00057     assert(this->mCurrentSolution.size()==this->mNumDofs);
00058 
00059     // Zero the matrix/vector if it is to be assembled
00060     if (assembleResidual)
00061     {
00062         PetscVecTools::Finalise(this->mResidualVector);
00063         PetscVecTools::Zero(this->mResidualVector);
00064     }
00065     if (assembleJacobian)
00066     {
00067         PetscMatTools::Zero(this->mrJacobianMatrix);
00068         PetscMatTools::Zero(this->mPreconditionMatrix);
00069     }
00070 
00071     c_matrix<double, STENCIL_SIZE, STENCIL_SIZE> a_elem;
00072     // The (element) preconditioner matrix: this is the same as the jacobian, but
00073     // with the mass matrix (ie \intgl phi_i phi_j) in the pressure-pressure block.
00074     c_matrix<double, STENCIL_SIZE, STENCIL_SIZE> a_elem_precond;
00075     c_vector<double, STENCIL_SIZE> b_elem;
00076 
00077     // Loop over elements
00078     for (typename AbstractTetrahedralMesh<DIM, DIM>::ElementIterator iter = this->mrQuadMesh.GetElementIteratorBegin();
00079          iter != this->mrQuadMesh.GetElementIteratorEnd();
00080          ++iter)
00081     {
00082         #define COVERAGE_IGNORE
00083         // note: if assembleJacobian only
00084         if(CommandLineArguments::Instance()->OptionExists("-mech_very_verbose") && assembleJacobian)
00085         {
00086             std::cout << "\r[" << PetscTools::GetMyRank() << "]: Element " << (*iter).GetIndex() << " of " << this->mrQuadMesh.GetNumElements() << std::flush;
00087         }
00088         #undef COVERAGE_IGNORE
00089 
00090         Element<DIM, DIM>& element = *iter;
00091 
00092         if (element.GetOwnership() == true)
00093         {
00094             AssembleOnElement(element, a_elem, a_elem_precond, b_elem, assembleResidual, assembleJacobian);
00095 
00099             //for (unsigned i=0; i<STENCIL_SIZE; i++)
00100             //{
00101             //    for (unsigned j=0; j<STENCIL_SIZE; j++)
00102             //    {
00103             //        a_elem(i,j)=1.0;
00104             //    }
00105             //}
00106 
00107 
00109             // See comments about ordering at the elemental level vs ordering of the global mat/vec
00110             // in eg AbstractContinuumMechanicsAssembler
00112 
00113             unsigned p_indices[STENCIL_SIZE];
00114             for (unsigned i=0; i<NUM_NODES_PER_ELEMENT; i++)
00115             {
00116                 for (unsigned j=0; j<DIM; j++)
00117                 {
00118                     // note: DIM+1 is the problem dimension (= this->mProblemDimension)
00119                     p_indices[DIM*i+j] = (DIM+1)*element.GetNodeGlobalIndex(i) + j;
00120                 }
00121             }
00122 
00123             for (unsigned i=0; i<NUM_VERTICES_PER_ELEMENT; i++)
00124             {
00125                 // We assume the vertices are the first num_vertices nodes in the list of nodes
00126                 // in the element. Hence:
00127                 unsigned vertex_index = element.GetNodeGlobalIndex(i);
00128                 // note: DIM+1 is the problem dimension (= this->mProblemDimension)
00129                 p_indices[DIM*NUM_NODES_PER_ELEMENT + i] = (DIM+1)*vertex_index + DIM;
00130             }
00131 
00132             if (assembleJacobian)
00133             {
00134                 PetscMatTools::AddMultipleValues<STENCIL_SIZE>(this->mrJacobianMatrix, p_indices, a_elem);
00135                 PetscMatTools::AddMultipleValues<STENCIL_SIZE>(this->mPreconditionMatrix, p_indices, a_elem_precond);
00136             }
00137 
00138             if (assembleResidual)
00139             {
00140                 PetscVecTools::AddMultipleValues<STENCIL_SIZE>(this->mResidualVector, p_indices, b_elem);
00141             }
00142         }
00143     }
00144 
00145     // Loop over specified boundary elements and compute surface traction terms
00146     c_vector<double, BOUNDARY_STENCIL_SIZE> b_boundary_elem; // note BOUNDARY_STENCIL_SIZE = DIM*NUM_BOUNDARY_NODES, as all pressure block is zero
00147     c_matrix<double, BOUNDARY_STENCIL_SIZE, BOUNDARY_STENCIL_SIZE> a_boundary_elem;
00148 
00149     if (this->mrProblemDefinition.GetTractionBoundaryConditionType() != NO_TRACTIONS)
00150     {
00151         for (unsigned bc_index=0; bc_index<this->mrProblemDefinition.rGetTractionBoundaryElements().size(); bc_index++)
00152         {
00153             BoundaryElement<DIM-1,DIM>& r_boundary_element = *(this->mrProblemDefinition.rGetTractionBoundaryElements()[bc_index]);
00154 
00155             // If the BCs are tractions applied on a given surface, the boundary integral is independent of u,
00156             // so a_boundary_elem will be zero (no contribution to jacobian).
00157             // If the BCs are normal pressure applied to the deformed body, the boundary depends on the deformation,
00158             // so there is a contribution to the jacobian, and a_boundary_elem is non-zero. Note however that
00159             // the AssembleOnBoundaryElement() method might decide not to include this, as it can actually
00160             // cause divergence if the current guess is not close to the true solution
00161             this->AssembleOnBoundaryElement(r_boundary_element, a_boundary_elem, b_boundary_elem, assembleResidual, assembleJacobian, bc_index);
00162 
00163             unsigned p_indices[BOUNDARY_STENCIL_SIZE];
00164             for (unsigned i=0; i<NUM_NODES_PER_BOUNDARY_ELEMENT; i++)
00165             {
00166                 for (unsigned j=0; j<DIM; j++)
00167                 {
00168                     // note: DIM+1, on the right hand side of the below, is the problem dimension (= this->mProblemDimension)
00169                     p_indices[DIM*i+j] = (DIM+1)*r_boundary_element.GetNodeGlobalIndex(i) + j;
00170                 }
00171             }
00172 
00173             if (assembleJacobian)
00174             {
00175                 PetscMatTools::AddMultipleValues<BOUNDARY_STENCIL_SIZE>(this->mrJacobianMatrix, p_indices, a_boundary_elem);
00176                 PetscMatTools::AddMultipleValues<BOUNDARY_STENCIL_SIZE>(this->mPreconditionMatrix, p_indices, a_boundary_elem);
00177             }
00178 
00179             if (assembleResidual)
00180             {
00181                 PetscVecTools::AddMultipleValues<BOUNDARY_STENCIL_SIZE>(this->mResidualVector, p_indices, b_boundary_elem);
00182             }
00183         }
00184     }
00185 
00186 
00187     if (assembleResidual)
00188     {
00189         PetscVecTools::Finalise(this->mResidualVector);
00190     }
00191     if (assembleJacobian)
00192     {
00193         PetscMatTools::SwitchWriteMode(this->mrJacobianMatrix);
00194         PetscMatTools::SwitchWriteMode(this->mPreconditionMatrix);
00195     }
00196 
00197     if(assembleJacobian)
00198     {
00199        this->AddIdentityBlockForDummyPressureVariables(NONLINEAR_PROBLEM_APPLY_TO_EVERYTHING);
00200     }
00201     else if (assembleResidual)
00202     {
00203        this->AddIdentityBlockForDummyPressureVariables(NONLINEAR_PROBLEM_APPLY_TO_RESIDUAL_ONLY);
00204     }
00205 
00206     this->FinishAssembleSystem(assembleResidual, assembleJacobian);
00207 }
00208 
00209 template<size_t DIM>
00210 void IncompressibleNonlinearElasticitySolver<DIM>::AssembleOnElement(
00211             Element<DIM, DIM>& rElement,
00212             c_matrix<double, STENCIL_SIZE, STENCIL_SIZE >& rAElem,
00213             c_matrix<double, STENCIL_SIZE, STENCIL_SIZE >& rAElemPrecond,
00214             c_vector<double, STENCIL_SIZE>& rBElem,
00215             bool assembleResidual,
00216             bool assembleJacobian)
00217 {
00218     static c_matrix<double,DIM,DIM> jacobian;
00219     static c_matrix<double,DIM,DIM> inverse_jacobian;
00220     double jacobian_determinant;
00221 
00222     this->mrQuadMesh.GetInverseJacobianForElement(rElement.GetIndex(), jacobian, jacobian_determinant, inverse_jacobian);
00223 
00224     if (assembleJacobian)
00225     {
00226         rAElem.clear();
00227         rAElemPrecond.clear();
00228     }
00229 
00230     if (assembleResidual)
00231     {
00232         rBElem.clear();
00233     }
00234 
00235     // Get the current displacement at the nodes
00236     static c_matrix<double,DIM,NUM_NODES_PER_ELEMENT> element_current_displacements;
00237     static c_vector<double,NUM_VERTICES_PER_ELEMENT> element_current_pressures;
00238     for (unsigned II=0; II<NUM_NODES_PER_ELEMENT; II++)
00239     {
00240         for (unsigned JJ=0; JJ<DIM; JJ++)
00241         {
00242             // note: DIM+1, on the right hand side of the below, is the problem dimension (= this->mProblemDimension)
00243             element_current_displacements(JJ,II) = this->mCurrentSolution[(DIM+1)*rElement.GetNodeGlobalIndex(II) + JJ];
00244         }
00245     }
00246 
00247     // Get the current pressure at the vertices
00248     for (unsigned II=0; II<NUM_VERTICES_PER_ELEMENT; II++)
00249     {
00250         // At the moment we assume the vertices are the first num_vertices nodes in the list of nodes
00251         // in the mesh. Hence:
00252         unsigned vertex_index = rElement.GetNodeGlobalIndex(II);
00253 
00254         // note: DIM+1, on the right hand side of the below, is the problem dimension (= this->mProblemDimension)
00255         element_current_pressures(II) = this->mCurrentSolution[(DIM+1)*vertex_index + DIM];
00256     }
00257 
00258     // Allocate memory for the basis functions values and derivative values
00259     static c_vector<double, NUM_VERTICES_PER_ELEMENT> linear_phi;
00260     static c_vector<double, NUM_NODES_PER_ELEMENT> quad_phi;
00261     static c_matrix<double, DIM, NUM_NODES_PER_ELEMENT> grad_quad_phi;
00262     static c_matrix<double, NUM_NODES_PER_ELEMENT, DIM> trans_grad_quad_phi;
00263 
00264     // Get the material law
00265     AbstractIncompressibleMaterialLaw<DIM>* p_material_law
00266         = this->mrProblemDefinition.GetIncompressibleMaterialLaw(rElement.GetIndex());
00267 
00268     static c_matrix<double,DIM,DIM> grad_u; // grad_u = (du_i/dX_M)
00269 
00270     static c_matrix<double,DIM,DIM> F;      // the deformation gradient, F = dx/dX, F_{iM} = dx_i/dX_M
00271     static c_matrix<double,DIM,DIM> C;      // Green deformation tensor, C = F^T F
00272     static c_matrix<double,DIM,DIM> inv_C;  // inverse(C)
00273     static c_matrix<double,DIM,DIM> inv_F;  // inverse(F)
00274     static c_matrix<double,DIM,DIM> T;      // Second Piola-Kirchoff stress tensor (= dW/dE = 2dW/dC)
00275 
00276     static c_matrix<double,DIM,DIM> F_T;    // F*T
00277     static c_matrix<double,DIM,NUM_NODES_PER_ELEMENT> F_T_grad_quad_phi; // F*T*grad_quad_phi
00278 
00279     c_vector<double,DIM> body_force;
00280 
00281     static FourthOrderTensor<DIM,DIM,DIM,DIM> dTdE;    // dTdE(M,N,P,Q) = dT_{MN}/dE_{PQ}
00282     static FourthOrderTensor<DIM,DIM,DIM,DIM> dSdF;    // dSdF(M,i,N,j) = dS_{Mi}/dF_{jN}
00283 
00284     static FourthOrderTensor<NUM_NODES_PER_ELEMENT,DIM,DIM,DIM> temp_tensor;
00285     static FourthOrderTensor<NUM_NODES_PER_ELEMENT,DIM,NUM_NODES_PER_ELEMENT,DIM> dSdF_quad_quad;
00286 
00287     static c_matrix<double, DIM, NUM_NODES_PER_ELEMENT> temp_matrix;
00288     static c_matrix<double,NUM_NODES_PER_ELEMENT,DIM> grad_quad_phi_times_invF;
00289 
00290 
00291     if(this->mSetComputeAverageStressPerElement)
00292     {
00293         this->mAverageStressesPerElement[rElement.GetIndex()] = zero_vector<double>(DIM*(DIM+1)/2);
00294     }
00295 
00296     // Loop over Gauss points
00297     for (unsigned quadrature_index=0; quadrature_index < this->mpQuadratureRule->GetNumQuadPoints(); quadrature_index++)
00298     {
00299         // This is needed by the cardiac mechanics solver
00300         unsigned current_quad_point_global_index =   rElement.GetIndex()*this->mpQuadratureRule->GetNumQuadPoints()
00301                                                    + quadrature_index;
00302 
00303         double wJ = jacobian_determinant * this->mpQuadratureRule->GetWeight(quadrature_index);
00304 
00305         const ChastePoint<DIM>& quadrature_point = this->mpQuadratureRule->rGetQuadPoint(quadrature_index);
00306 
00307         // Set up basis function information
00308         LinearBasisFunction<DIM>::ComputeBasisFunctions(quadrature_point, linear_phi);
00309         QuadraticBasisFunction<DIM>::ComputeBasisFunctions(quadrature_point, quad_phi);
00310         QuadraticBasisFunction<DIM>::ComputeTransformedBasisFunctionDerivatives(quadrature_point, inverse_jacobian, grad_quad_phi);
00311         trans_grad_quad_phi = trans(grad_quad_phi);
00312 
00313         // Get the body force, interpolating X if necessary
00314         if (assembleResidual)
00315         {
00316             switch (this->mrProblemDefinition.GetBodyForceType())
00317             {
00318                 case FUNCTIONAL_BODY_FORCE:
00319                 {
00320                     c_vector<double,DIM> X = zero_vector<double>(DIM);
00321                     // interpolate X (using the vertices and the /linear/ bases, as no curvilinear elements
00322                     for (unsigned node_index=0; node_index<NUM_VERTICES_PER_ELEMENT; node_index++)
00323                     {
00324                         X += linear_phi(node_index)*this->mrQuadMesh.GetNode( rElement.GetNodeGlobalIndex(node_index) )->rGetLocation();
00325                     }
00326                     body_force = this->mrProblemDefinition.EvaluateBodyForceFunction(X, this->mCurrentTime);
00327                     break;
00328                 }
00329                 case CONSTANT_BODY_FORCE:
00330                 {
00331                     body_force = this->mrProblemDefinition.GetConstantBodyForce();
00332                     break;
00333                 }
00334                 default:
00335                     NEVER_REACHED;
00336             }
00337         }
00338 
00339         // Interpolate grad_u and p
00340         grad_u = zero_matrix<double>(DIM,DIM);
00341 
00342         for (unsigned node_index=0; node_index<NUM_NODES_PER_ELEMENT; node_index++)
00343         {
00344             for (unsigned i=0; i<DIM; i++)
00345             {
00346                 for (unsigned M=0; M<DIM; M++)
00347                 {
00348                     grad_u(i,M) += grad_quad_phi(M,node_index)*element_current_displacements(i,node_index);
00349                 }
00350             }
00351         }
00352 
00353         double pressure = 0;
00354         for (unsigned vertex_index=0; vertex_index<NUM_VERTICES_PER_ELEMENT; vertex_index++)
00355         {
00356             pressure += linear_phi(vertex_index)*element_current_pressures(vertex_index);
00357         }
00358 
00359         // Calculate C, inv(C) and T
00360         for (unsigned i=0; i<DIM; i++)
00361         {
00362             for (unsigned M=0; M<DIM; M++)
00363             {
00364                 F(i,M) = (i==M?1:0) + grad_u(i,M);
00365             }
00366         }
00367 
00368         C = prod(trans(F),F);
00369         inv_C = Inverse(C);
00370         inv_F = Inverse(F);
00371 
00372         double detF = Determinant(F);
00373 
00374         // Compute the passive stress, and dTdE corresponding to passive stress
00375         this->SetupChangeOfBasisMatrix(rElement.GetIndex(), current_quad_point_global_index);
00376         p_material_law->SetChangeOfBasisMatrix(this->mChangeOfBasisMatrix);
00377         p_material_law->ComputeStressAndStressDerivative(C, inv_C, pressure, T, dTdE, assembleJacobian);
00378 
00379         if(this->mIncludeActiveTension)
00380         {
00381             // Add any active stresses, if there are any. Requires subclasses to overload this method,
00382             // see for example the cardiac mechanics assemblers.
00383             this->AddActiveStressAndStressDerivative(C, rElement.GetIndex(), current_quad_point_global_index,
00384                                                      T, dTdE, assembleJacobian);
00385         }
00386 
00387         if(this->mSetComputeAverageStressPerElement)
00388         {
00389             this->AddStressToAverageStressPerElement(T,rElement.GetIndex());
00390         }
00391 
00392         // Residual vector
00393         if (assembleResidual)
00394         {
00395             F_T = prod(F,T);
00396             F_T_grad_quad_phi = prod(F_T, grad_quad_phi);
00397 
00398             for (unsigned index=0; index<NUM_NODES_PER_ELEMENT*DIM; index++)
00399             {
00400                 unsigned spatial_dim = index%DIM;
00401                 unsigned node_index = (index-spatial_dim)/DIM;
00402 
00403                 rBElem(index) +=  - this->mrProblemDefinition.GetDensity()
00404                                   * body_force(spatial_dim)
00405                                   * quad_phi(node_index)
00406                                   * wJ;
00407 
00408                 // The T(M,N)*F(spatial_dim,M)*grad_quad_phi(N,node_index) term
00409                 rBElem(index) +=   F_T_grad_quad_phi(spatial_dim,node_index)
00410                                  * wJ;
00411             }
00412 
00413             for (unsigned vertex_index=0; vertex_index<NUM_VERTICES_PER_ELEMENT; vertex_index++)
00414             {
00415                 rBElem( NUM_NODES_PER_ELEMENT*DIM + vertex_index ) +=   linear_phi(vertex_index)
00416                                                                       * (detF - 1)
00417                                                                       * wJ;
00418             }
00419         }
00420 
00421         // Jacobian matrix
00422         if (assembleJacobian)
00423         {
00424             // Save trans(grad_quad_phi) * invF
00425             grad_quad_phi_times_invF = prod(trans_grad_quad_phi, inv_F);
00426 
00428             // Set up the tensor dSdF
00429             //
00430             // dSdF as a function of T and dTdE (which is what the material law returns) is given by:
00431             //
00432             // dS_{Mi}/dF_{jN} = (dT_{MN}/dC_{PQ}+dT_{MN}/dC_{PQ}) F{iP} F_{jQ}  + T_{MN} delta_{ij}
00433             //
00434             // todo1: this should probably move into the material law (but need to make sure
00435             // memory is handled efficiently
00436             // todo2: get material law to return this immediately, not dTdE
00438 
00439             // Set up the tensor 0.5(dTdE(M,N,P,Q) + dTdE(M,N,Q,P))
00440             for (unsigned M=0; M<DIM; M++)
00441             {
00442                 for (unsigned N=0; N<DIM; N++)
00443                 {
00444                     for (unsigned P=0; P<DIM; P++)
00445                     {
00446                         for (unsigned Q=0; Q<DIM; Q++)
00447                         {
00448                             // This is NOT dSdF, just using this as storage space
00449                             dSdF(M,N,P,Q) = 0.5*(dTdE(M,N,P,Q) + dTdE(M,N,Q,P));
00450                         }
00451                     }
00452                 }
00453             }
00454 
00455             // This is NOT dTdE, just reusing memory. A^{MdPQ}  = F^d_N * dTdE_sym^{MNPQ}
00456             dTdE.template SetAsContractionOnSecondDimension<DIM>(F, dSdF);
00457 
00458             // dSdF{MdPe} := F^d_N * F^e_Q * dTdE_sym^{MNPQ}
00459             dSdF.template SetAsContractionOnFourthDimension<DIM>(F, dTdE);
00460 
00461             // Now add the T_{MN} delta_{ij} term
00462             for (unsigned M=0; M<DIM; M++)
00463             {
00464                 for (unsigned N=0; N<DIM; N++)
00465                 {
00466                     for (unsigned i=0; i<DIM; i++)
00467                     {
00468                         dSdF(M,i,N,i) += T(M,N);
00469                     }
00470                 }
00471             }
00472 
00474             // Set up the tensor
00475             //   dSdF_quad_quad(node_index1, spatial_dim1, node_index2, spatial_dim2)
00476             //            =    dS_{M,spatial_dim1}/d_F{spatial_dim2,N}
00477             //               * grad_quad_phi(M,node_index1)
00478             //               * grad_quad_phi(P,node_index2)
00479             //
00480             //            =    dSdF(M,spatial_index1,N,spatial_index2)
00481             //               * grad_quad_phi(M,node_index1)
00482             //               * grad_quad_phi(P,node_index2)
00483             //
00485             temp_tensor.template SetAsContractionOnFirstDimension<DIM>( trans_grad_quad_phi, dSdF );
00486             dSdF_quad_quad.template SetAsContractionOnThirdDimension<DIM>( trans_grad_quad_phi, temp_tensor );
00487 
00488             for (unsigned index1=0; index1<NUM_NODES_PER_ELEMENT*DIM; index1++)
00489             {
00490                 unsigned spatial_dim1 = index1%DIM;
00491                 unsigned node_index1 = (index1-spatial_dim1)/DIM;
00492 
00493 
00494                 for (unsigned index2=0; index2<NUM_NODES_PER_ELEMENT*DIM; index2++)
00495                 {
00496                     unsigned spatial_dim2 = index2%DIM;
00497                     unsigned node_index2 = (index2-spatial_dim2)/DIM;
00498 
00499                     // The dSdF*grad_quad_phi*grad_quad_phi term
00500                     rAElem(index1,index2)  +=   dSdF_quad_quad(node_index1,spatial_dim1,node_index2,spatial_dim2)
00501                                               * wJ;
00502                 }
00503 
00504                 for (unsigned vertex_index=0; vertex_index<NUM_VERTICES_PER_ELEMENT; vertex_index++)
00505                 {
00506                     unsigned index2 = NUM_NODES_PER_ELEMENT*DIM + vertex_index;
00507 
00508                     // The -invF(M,spatial_dim1)*grad_quad_phi(M,node_index1)*linear_phi(vertex_index) term
00509                     rAElem(index1,index2)  +=  - grad_quad_phi_times_invF(node_index1,spatial_dim1)
00510                                                * linear_phi(vertex_index)
00511                                                * wJ;
00512                 }
00513             }
00514 
00515             for (unsigned vertex_index=0; vertex_index<NUM_VERTICES_PER_ELEMENT; vertex_index++)
00516             {
00517                 unsigned index1 = NUM_NODES_PER_ELEMENT*DIM + vertex_index;
00518 
00519                 for (unsigned index2=0; index2<NUM_NODES_PER_ELEMENT*DIM; index2++)
00520                 {
00521                     unsigned spatial_dim2 = index2%DIM;
00522                     unsigned node_index2 = (index2-spatial_dim2)/DIM;
00523 
00524                     // Same as (negative of) the opposite block (ie a few lines up), except for detF
00525                     rAElem(index1,index2) +=   detF
00526                                              * grad_quad_phi_times_invF(node_index2,spatial_dim2)
00527                                              * linear_phi(vertex_index)
00528                                              * wJ;
00529                 }
00530 
00532                 // Preconditioner matrix
00533                 // Fill the mass matrix (ie \intgl phi_i phi_j) in the
00534                 // pressure-pressure block. Note, the rest of the
00535                 // entries are filled in at the end
00537                 for (unsigned vertex_index2=0; vertex_index2<NUM_VERTICES_PER_ELEMENT; vertex_index2++)
00538                 {
00539                     unsigned index2 = NUM_NODES_PER_ELEMENT*DIM + vertex_index2;
00540                     rAElemPrecond(index1,index2) +=   linear_phi(vertex_index)
00541                                                     * linear_phi(vertex_index2)
00542                                                     * wJ;
00543                 }
00544             }
00545         }
00546     }
00547 
00548     if (assembleJacobian)
00549     {
00550         if(this->mPetscDirectSolve)
00551         {
00552             // Petsc will do an LU factorisation of the preconditioner, which we
00553             // set equal to  [ A  B1^T ]
00554             //               [ B2  M   ]
00555             // The reason for the mass matrix is to avoid zeros on the diagonal
00556             rAElemPrecond = rAElemPrecond + rAElem;
00557         }
00558         else
00559         {
00560             // Fill in the other blocks of the preconditioner matrix, by adding
00561             // the Jacobian matrix (this doesn't effect the pressure-pressure block
00562             // of rAElemPrecond as the pressure-pressure block of rAElem is zero),
00563             // and the zero a block.
00564             //
00565             // The following altogether gives the preconditioner  [ A  B1^T ]
00566             //                                                    [ 0  M    ]
00567             rAElemPrecond = rAElemPrecond + rAElem;
00568 
00569             for (unsigned i=NUM_NODES_PER_ELEMENT*DIM; i<STENCIL_SIZE; i++)
00570             {
00571                 for (unsigned j=0; j<NUM_NODES_PER_ELEMENT*DIM; j++)
00572                 {
00573                     rAElemPrecond(i,j) = 0.0;
00574                 }
00575             }
00576         }
00577     }
00578 
00579 
00580     if(this->mSetComputeAverageStressPerElement)
00581     {
00582         for(unsigned i=0; i<DIM*(DIM+1)/2; i++)
00583         {
00584             this->mAverageStressesPerElement[rElement.GetIndex()](i) /= this->mpQuadratureRule->GetNumQuadPoints();
00585         }
00586     }
00587 }
00588 
00589 
00590 
00591 template<size_t DIM>
00592 void IncompressibleNonlinearElasticitySolver<DIM>::FormInitialGuess()
00593 {
00594     this->mCurrentSolution.resize(this->mNumDofs, 0.0);
00595 
00596     for (typename AbstractTetrahedralMesh<DIM, DIM>::ElementIterator iter = this->mrQuadMesh.GetElementIteratorBegin();
00597          iter != this->mrQuadMesh.GetElementIteratorEnd();
00598          ++iter)
00599     {
00601         double zero_strain_pressure
00602            = this->mrProblemDefinition.GetIncompressibleMaterialLaw(iter->GetIndex())->GetZeroStrainPressure();
00603 
00604 
00605         // Loop over vertices and set pressure solution to be zero-strain-pressure
00606         for (unsigned j=0; j<NUM_VERTICES_PER_ELEMENT; j++)
00607         {
00608             // We assume the vertices are the first num_vertices nodes in the list of nodes
00609             // in the element. Hence:
00610             unsigned vertex_index = iter->GetNodeGlobalIndex(j);
00611             // note: DIM+1 is the problem dimension (= this->mProblemDimension)
00612             this->mCurrentSolution[ (DIM+1)*vertex_index + DIM ] = zero_strain_pressure;
00613         }
00614     }
00615 }
00616 
00617 
00618 
00619 
00620 template<size_t DIM>
00621 IncompressibleNonlinearElasticitySolver<DIM>::IncompressibleNonlinearElasticitySolver(
00622         AbstractTetrahedralMesh<DIM,DIM>& rQuadMesh,
00623         SolidMechanicsProblemDefinition<DIM>& rProblemDefinition,
00624         std::string outputDirectory)
00625     : AbstractNonlinearElasticitySolver<DIM>(rQuadMesh,
00626                                              rProblemDefinition,
00627                                              outputDirectory,
00628                                              INCOMPRESSIBLE)
00629 {
00630     if(rProblemDefinition.GetCompressibilityType() != INCOMPRESSIBLE)
00631     {
00632         EXCEPTION("SolidMechanicsProblemDefinition object contains compressible material laws");
00633     }
00634 
00635     FormInitialGuess();
00636 }
00637 
00638 
00640 // Explicit instantiation
00642 
00643 template class IncompressibleNonlinearElasticitySolver<2>;
00644 template class IncompressibleNonlinearElasticitySolver<3>;

Generated by  doxygen 1.6.2