Chaste
Commit::1fd4e48e3990e67db148bc1bc4cf6991a0049d0c
AbstractIsotropicIncompressibleMaterialLaw.hpp
1
/*
2
3
Copyright (c) 2005-2024, University of Oxford.
4
All rights reserved.
5
6
University of Oxford means the Chancellor, Masters and Scholars of the
7
University of Oxford, having an administrative office at Wellington
8
Square, Oxford OX1 2JD, UK.
9
10
This file is part of Chaste.
11
12
Redistribution and use in source and binary forms, with or without
13
modification, are permitted provided that the following conditions are met:
14
* Redistributions of source code must retain the above copyright notice,
15
this list of conditions and the following disclaimer.
16
* Redistributions in binary form must reproduce the above copyright notice,
17
this list of conditions and the following disclaimer in the documentation
18
and/or other materials provided with the distribution.
19
* Neither the name of the University of Oxford nor the names of its
20
contributors may be used to endorse or promote products derived from this
21
software without specific prior written permission.
22
23
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
27
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
29
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
34
*/
35
36
37
#ifndef ABSTRACTISOTROPICINCOMPRESSIBLEMATERIALLAW_HPP_
38
#define ABSTRACTISOTROPICINCOMPRESSIBLEMATERIALLAW_HPP_
39
40
#include "AbstractIncompressibleMaterialLaw.hpp"
41
54
template
<
unsigned
DIM>
55
class
AbstractIsotropicIncompressibleMaterialLaw
:
public
AbstractIncompressibleMaterialLaw
<DIM>
56
{
57
protected
:
58
67
virtual
double
Get_dW_dI1
(
double
I1,
double
I2)=0;
68
77
virtual
double
Get_dW_dI2
(
double
I1,
double
I2)=0;
78
87
virtual
double
Get_d2W_dI1
(
double
I1,
double
I2)=0;
88
97
virtual
double
Get_d2W_dI2
(
double
I1,
double
I2)=0;
98
107
virtual
double
Get_d2W_dI1I2
(
double
I1,
double
I2)=0;
108
109
public
:
110
132
void
ComputeStressAndStressDerivative
(c_matrix<double,DIM,DIM>& rC,
133
c_matrix<double,DIM,DIM>& rInvC,
134
double
pressure,
135
c_matrix<double,DIM,DIM>& rT,
136
FourthOrderTensor<DIM,DIM,DIM,DIM>
& rDTdE,
137
bool
computeDTdE);
138
142
virtual
~AbstractIsotropicIncompressibleMaterialLaw
();
143
151
double
GetZeroStrainPressure
();
152
};
153
154
#endif
/*ABSTRACTISOTROPICINCOMPRESSIBLEMATERIALLAW_HPP_*/
AbstractIncompressibleMaterialLaw
Definition
AbstractIncompressibleMaterialLaw.hpp:54
AbstractIsotropicIncompressibleMaterialLaw
Definition
AbstractIsotropicIncompressibleMaterialLaw.hpp:56
AbstractIsotropicIncompressibleMaterialLaw::ComputeStressAndStressDerivative
void ComputeStressAndStressDerivative(c_matrix< double, DIM, DIM > &rC, c_matrix< double, DIM, DIM > &rInvC, double pressure, c_matrix< double, DIM, DIM > &rT, FourthOrderTensor< DIM, DIM, DIM, DIM > &rDTdE, bool computeDTdE)
Definition
AbstractIsotropicIncompressibleMaterialLaw.cpp:44
AbstractIsotropicIncompressibleMaterialLaw::GetZeroStrainPressure
double GetZeroStrainPressure()
Definition
AbstractIsotropicIncompressibleMaterialLaw.cpp:137
AbstractIsotropicIncompressibleMaterialLaw::Get_dW_dI1
virtual double Get_dW_dI1(double I1, double I2)=0
AbstractIsotropicIncompressibleMaterialLaw::~AbstractIsotropicIncompressibleMaterialLaw
virtual ~AbstractIsotropicIncompressibleMaterialLaw()
Definition
AbstractIsotropicIncompressibleMaterialLaw.cpp:39
AbstractIsotropicIncompressibleMaterialLaw::Get_d2W_dI1
virtual double Get_d2W_dI1(double I1, double I2)=0
AbstractIsotropicIncompressibleMaterialLaw::Get_d2W_dI1I2
virtual double Get_d2W_dI1I2(double I1, double I2)=0
AbstractIsotropicIncompressibleMaterialLaw::Get_d2W_dI2
virtual double Get_d2W_dI2(double I1, double I2)=0
AbstractIsotropicIncompressibleMaterialLaw::Get_dW_dI2
virtual double Get_dW_dI2(double I1, double I2)=0
FourthOrderTensor
Definition
FourthOrderTensor.hpp:52
continuum_mechanics
src
problem
material_laws
AbstractIsotropicIncompressibleMaterialLaw.hpp
Generated by
1.9.8