Chaste Commit::022a8154a7456c9c70fb29c841bb791b642cf571
AbstractFunctionalCalculator.hpp
1/*
2
3Copyright (c) 2005-2025, University of Oxford.
4All rights reserved.
5
6University of Oxford means the Chancellor, Masters and Scholars of the
7University of Oxford, having an administrative office at Wellington
8Square, Oxford OX1 2JD, UK.
9
10This file is part of Chaste.
11
12Redistribution and use in source and binary forms, with or without
13modification, are permitted provided that the following conditions are met:
14 * Redistributions of source code must retain the above copyright notice,
15 this list of conditions and the following disclaimer.
16 * Redistributions in binary form must reproduce the above copyright notice,
17 this list of conditions and the following disclaimer in the documentation
18 and/or other materials provided with the distribution.
19 * Neither the name of the University of Oxford nor the names of its
20 contributors may be used to endorse or promote products derived from this
21 software without specific prior written permission.
22
23THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
27LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
29GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
34*/
35
36#ifndef ABSTRACTFUNCTIONALCALCULATOR_HPP_
37#define ABSTRACTFUNCTIONALCALCULATOR_HPP_
38
39#include "LinearBasisFunction.hpp"
40#include "GaussianQuadratureRule.hpp"
41#include "AbstractTetrahedralMesh.hpp"
42#include "ReplicatableVector.hpp"
43
57template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
59{
60private:
61
64
73 c_vector<double,PROBLEM_DIM>& rU,
74 c_matrix<double,PROBLEM_DIM,SPACE_DIM>& rGradU)=0;
75
83
84public:
85
90 {
91 }
92
104
111};
112
114// Implementation
116
117template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
119{
120 double result_on_element = 0;
121
122 // Third order quadrature. Note that the functional may be non-polynomial (see documentation of class).
124
127 double jacobian_determinant;
128 c_matrix<double, SPACE_DIM, ELEMENT_DIM> jacobian;
129 c_matrix<double, ELEMENT_DIM, SPACE_DIM> inverse_jacobian;
130 rElement.CalculateInverseJacobian(jacobian, jacobian_determinant, inverse_jacobian);
131
132 const unsigned num_nodes = rElement.GetNumNodes();
133
134 // Loop over Gauss points
135 for (unsigned quad_index=0; quad_index < quad_rule.GetNumQuadPoints(); quad_index++)
136 {
137 const ChastePoint<ELEMENT_DIM>& quad_point = quad_rule.rGetQuadPoint(quad_index);
138
139 c_vector<double, ELEMENT_DIM+1> phi;
141 c_matrix<double, ELEMENT_DIM, ELEMENT_DIM+1> grad_phi;
143
144 // Location of the Gauss point in the original element will be stored in x
145 ChastePoint<SPACE_DIM> x(0,0,0);
146 c_vector<double,PROBLEM_DIM> u = zero_vector<double>(PROBLEM_DIM);
147 c_matrix<double,PROBLEM_DIM,SPACE_DIM> grad_u = zero_matrix<double>(PROBLEM_DIM,SPACE_DIM);
148
149 for (unsigned i=0; i<num_nodes; i++)
150 {
151 const c_vector<double, SPACE_DIM>& r_node_loc = rElement.GetNode(i)->rGetLocation();
152
153 // Interpolate x
154 x.rGetLocation() += phi(i)*r_node_loc;
155
156 // Interpolate u and grad u
157 unsigned node_global_index = rElement.GetNodeGlobalIndex(i);
158 for (unsigned index_of_unknown=0; index_of_unknown<PROBLEM_DIM; index_of_unknown++)
159 {
160 // NOTE - following assumes that, if say there are two unknowns u and v, they
161 // are stored in the current solution vector as
162 // [U1 V1 U2 V2 ... U_n V_n]
163 unsigned index_into_vec = PROBLEM_DIM*node_global_index + index_of_unknown;
164
165 double u_at_node = mSolutionReplicated[index_into_vec];
166 u(index_of_unknown) += phi(i)*u_at_node;
167 // NB. grad_u is PROBLEM_DIM x SPACE_DIM but grad_phi is ELEMENT_DIM x (ELEMENT_DIM+1)
168 // Assume here that SPACE_DIM == ELEMENT_DIM and assert it in calling function
169 for (unsigned j=0; j<ELEMENT_DIM; j++)
170 {
171 grad_u(index_of_unknown,j) += grad_phi(j,i)*u_at_node;
172 }
173 }
174 }
175
176 double wJ = jacobian_determinant * quad_rule.GetWeight(quad_index);
177 result_on_element += GetIntegrand(x, u, grad_u) * wJ;
178 }
179
180 return result_on_element;
181}
182
183template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
185{
186 assert(ELEMENT_DIM == SPACE_DIM); // LCOV_EXCL_LINE
187 assert(solution);
188 mSolutionReplicated.ReplicatePetscVector(solution);
189 if (mSolutionReplicated.GetSize() != rMesh.GetNumNodes() * PROBLEM_DIM)
190 {
191 EXCEPTION("The solution size does not match the mesh");
192 }
193
194 double local_result = 0;
195
196 try
197 {
199 iter != rMesh.GetElementIteratorEnd();
200 ++iter)
201 {
202 if (rMesh.CalculateDesignatedOwnershipOfElement((*iter).GetIndex()) == true && !ShouldSkipThisElement(*iter))
203 {
204 local_result += CalculateOnElement(*iter);
205 }
206 }
207 }
208 catch (Exception &exception_in_integral)
209 {
211 throw exception_in_integral;
212 }
214
215 double final_result;
216 MPI_Allreduce(&local_result, &final_result, 1, MPI_DOUBLE, MPI_SUM, PETSC_COMM_WORLD);
217 return final_result;
218}
219
220template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
225
226#endif /*ABSTRACTFUNCTIONALCALCULATOR_HPP_*/
#define EXCEPTION(message)
Node< SPACE_DIM > * GetNode(unsigned localIndex) const
unsigned GetNumNodes() const
unsigned GetNodeGlobalIndex(unsigned localIndex) const
double CalculateOnElement(Element< ELEMENT_DIM, SPACE_DIM > &rElement)
double Calculate(AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > &rMesh, Vec solution)
virtual double GetIntegrand(ChastePoint< SPACE_DIM > &rX, c_vector< double, PROBLEM_DIM > &rU, c_matrix< double, PROBLEM_DIM, SPACE_DIM > &rGradU)=0
virtual bool ShouldSkipThisElement(Element< ELEMENT_DIM, SPACE_DIM > &rElement)
virtual unsigned GetNumNodes() const
void CalculateInverseJacobian(c_matrix< double, SPACE_DIM, ELEMENT_DIM > &rJacobian, double &rJacobianDeterminant, c_matrix< double, ELEMENT_DIM, SPACE_DIM > &rInverseJacobian)
virtual bool CalculateDesignatedOwnershipOfElement(unsigned elementIndex)
ElementIterator GetElementIteratorBegin(bool skipDeletedElements=true)
const ChastePoint< ELEMENT_DIM > & rGetQuadPoint(unsigned index) const
double GetWeight(unsigned index) const
static void ComputeBasisFunctions(const ChastePoint< ELEMENT_DIM > &rPoint, c_vector< double, ELEMENT_DIM+1 > &rReturnValue)
static void ComputeTransformedBasisFunctionDerivatives(const ChastePoint< ELEMENT_DIM > &rPoint, const c_matrix< double, ELEMENT_DIM, ELEMENT_DIM > &rInverseJacobian, c_matrix< double, ELEMENT_DIM, ELEMENT_DIM+1 > &rReturnValue)
static void ReplicateException(bool flag)