Chaste Commit::ca8ccdedf819b6e02855bc0e8e6f50bdecbc5208
OperatorSplittingMonodomainSolver.cpp
1/*
2
3Copyright (c) 2005-2024, University of Oxford.
4All rights reserved.
5
6University of Oxford means the Chancellor, Masters and Scholars of the
7University of Oxford, having an administrative office at Wellington
8Square, Oxford OX1 2JD, UK.
9
10This file is part of Chaste.
11
12Redistribution and use in source and binary forms, with or without
13modification, are permitted provided that the following conditions are met:
14 * Redistributions of source code must retain the above copyright notice,
15 this list of conditions and the following disclaimer.
16 * Redistributions in binary form must reproduce the above copyright notice,
17 this list of conditions and the following disclaimer in the documentation
18 and/or other materials provided with the distribution.
19 * Neither the name of the University of Oxford nor the names of its
20 contributors may be used to endorse or promote products derived from this
21 software without specific prior written permission.
22
23THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
27LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
29GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
34*/
35
36#include "OperatorSplittingMonodomainSolver.hpp"
37
38
39template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
41{
42 assert(this->mpLinearSystem->rGetLhsMatrix() != NULL);
43 assert(this->mpLinearSystem->rGetRhsVector() != NULL);
44
46 // set up LHS matrix (and mass matrix)
48 if (computeMatrix)
49 {
50 mpMonodomainAssembler->SetMatrixToAssemble(this->mpLinearSystem->rGetLhsMatrix());
51 mpMonodomainAssembler->AssembleMatrix();
52
53 MassMatrixAssembler<ELEMENT_DIM,SPACE_DIM> mass_matrix_assembler(this->mpMesh, HeartConfig::Instance()->GetUseMassLumping());
54 mass_matrix_assembler.SetMatrixToAssemble(mMassMatrix);
55 mass_matrix_assembler.Assemble();
56
57 this->mpLinearSystem->FinaliseLhsMatrix();
58 PetscMatTools::Finalise(mMassMatrix);
59 }
60
61 HeartEventHandler::BeginEvent(HeartEventHandler::ASSEMBLE_RHS);
62
64 // Set up z in b=Mz
66 DistributedVectorFactory* p_factory = this->mpMesh->GetDistributedVectorFactory();
67 // dist stripe for the current Voltage
68 DistributedVector distributed_current_solution = p_factory->CreateDistributedVector(currentSolution);
69 // dist stripe for z (return value)
70 DistributedVector dist_vec_matrix_based = p_factory->CreateDistributedVector(mVecForConstructingRhs);
71
74
75 for (DistributedVector::Iterator index = dist_vec_matrix_based.Begin();
76 index!= dist_vec_matrix_based.End();
77 ++index)
78 {
79 double V = distributed_current_solution[index];
80 // in the main solver, the nodal ionic current and stimuli is computed and used.
81 // However in operator splitting, this part of the solve is diffusion only, no reaction terms
82 //double F = - Am*this->mpMonodomainTissue->rGetIionicCacheReplicated()[index.Global]
83 // - this->mpMonodomainTissue->rGetIntracellularStimulusCacheReplicated()[index.Global];
84
85 dist_vec_matrix_based[index] = Am*Cm*V*PdeSimulationTime::GetPdeTimeStepInverse();
86 }
87 dist_vec_matrix_based.Restore();
88
90 // b = Mz
92 MatMult(mMassMatrix, mVecForConstructingRhs, this->mpLinearSystem->rGetRhsVector());
93
94 // assembling RHS is not finished yet, as Neumann bcs are added below, but
95 // the event will be begun again inside mpMonodomainAssembler->AssembleVector();
96 HeartEventHandler::EndEvent(HeartEventHandler::ASSEMBLE_RHS);
97
99 // apply Neumann boundary conditions
101 mpNeumannSurfaceTermsAssembler->SetVectorToAssemble(this->mpLinearSystem->rGetRhsVector(), false/*don't zero vector!*/);
102 mpNeumannSurfaceTermsAssembler->AssembleVector();
103
104 // finalise
105 this->mpLinearSystem->FinaliseRhsVector();
106}
107
108template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
110{
111 double time = PdeSimulationTime::GetTime();
113 mpMonodomainTissue->SolveCellSystems(currentSolution, time, time+dt/2.0, true);
114}
115
116template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
118{
119 // solve cell models for second half timestep
120 double time = PdeSimulationTime::GetTime();
122 mpMonodomainTissue->SolveCellSystems(currentSolution, time + dt/2, PdeSimulationTime::GetNextTime(), true);
123}
124
125template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
127{
128 if (this->mpLinearSystem != NULL)
129 {
130 return;
131 }
132
133 // call base class version...
135
136 //..then do a bit extra
137 if (HeartConfig::Instance()->GetUseAbsoluteTolerance())
138 {
139 this->mpLinearSystem->SetAbsoluteTolerance(HeartConfig::Instance()->GetAbsoluteTolerance());
140 }
141 else
142 {
144 // re-implement when needed
145 //this->mpLinearSystem->SetRelativeTolerance(HeartConfig::Instance()->GetRelativeTolerance());
146 }
147
148 this->mpLinearSystem->SetKspType(HeartConfig::Instance()->GetKSPSolver());
149 this->mpLinearSystem->SetPcType(HeartConfig::Instance()->GetKSPPreconditioner());
150 this->mpLinearSystem->SetMatrixIsSymmetric(true);
151 this->mpLinearSystem->SetUseFixedNumberIterations(HeartConfig::Instance()->GetUseFixedNumberIterationsLinearSolver(), HeartConfig::Instance()->GetEvaluateNumItsEveryNSolves());
152
153 // initialise matrix-based RHS vector and matrix, and use the linear
154 // system rhs as a template
155 Vec& r_template = this->mpLinearSystem->rGetRhsVector();
156 VecDuplicate(r_template, &mVecForConstructingRhs);
157 PetscInt ownership_range_lo;
158 PetscInt ownership_range_hi;
159 VecGetOwnershipRange(r_template, &ownership_range_lo, &ownership_range_hi);
160 PetscInt local_size = ownership_range_hi - ownership_range_lo;
161 PetscTools::SetupMat(mMassMatrix, this->mpMesh->GetNumNodes(), this->mpMesh->GetNumNodes(),
162 this->mpMesh->CalculateMaximumNodeConnectivityPerProcess(),
163 local_size, local_size);
164}
165
166template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
171 : AbstractDynamicLinearPdeSolver<ELEMENT_DIM,SPACE_DIM,1>(pMesh),
172 mpBoundaryConditions(pBoundaryConditions),
173 mpMonodomainTissue(pTissue)
174{
175 assert(pTissue);
176 assert(pBoundaryConditions);
177 this->mMatrixIsConstant = true;
178
181
182 // Tell tissue there's no need to replicate ionic caches
183 pTissue->SetCacheReplication(false);
185}
186
187template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
189{
190 delete mpMonodomainAssembler;
191 delete mpNeumannSurfaceTermsAssembler;
192
193 if (mVecForConstructingRhs)
194 {
195 PetscTools::Destroy(mVecForConstructingRhs);
196 PetscTools::Destroy(mMassMatrix);
197 }
198}
199
200// Explicit instantiation
#define NEVER_REACHED
void SetCacheReplication(bool doCacheReplication)
void SetMatrixToAssemble(Mat &rMatToAssemble, bool zeroMatrixBeforeAssembly=true)
virtual void InitialiseForSolve(Vec initialSolution=nullptr)
AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > * mpMesh
DistributedVector CreateDistributedVector(Vec vec, bool readOnly=false)
double GetCapacitance() const
double GetSurfaceAreaToVolumeRatio() const
static HeartConfig * Instance()
void SetupLinearSystem(Vec currentSolution, bool computeMatrix)
NaturalNeumannSurfaceTermAssembler< ELEMENT_DIM, SPACE_DIM, 1 > * mpNeumannSurfaceTermsAssembler
OperatorSplittingMonodomainSolver(AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *pMesh, MonodomainTissue< ELEMENT_DIM, SPACE_DIM > *pTissue, BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, 1 > *pBoundaryConditions)
MonodomainAssembler< ELEMENT_DIM, SPACE_DIM > * mpMonodomainAssembler
MonodomainTissue< ELEMENT_DIM, SPACE_DIM > * mpMonodomainTissue
static double GetPdeTimeStep()
static double GetPdeTimeStepInverse()
static double GetTime()
static double GetNextTime()
static void Finalise(Mat matrix)
static void Destroy(Vec &rVec)
static void SetupMat(Mat &rMat, int numRows, int numColumns, unsigned rowPreallocation, int numLocalRows=PETSC_DECIDE, int numLocalColumns=PETSC_DECIDE, bool ignoreOffProcEntries=true, bool newAllocationError=true)